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In this paper, a modal identi"cation system that is based on the vector backward
autoregressive (VBAR) model has been developed for the identi"cation of natural
frequencies, damping ratios and mode shapes of structures from measured output data. The
modal identi"cation using forward autoregressive approach has some problems in
discriminating the structure modes from spurious modes. On the contrary, the VBAR
approach provides a determinate boundary for the separation of system modes from
spurious modes, and an eigenvalue "lter for the selection of physical modes is existent in the
proposed method. For convenience of application, the backward state equation established
from VBAR model is transformed into a forward state equation, which is termed as
transformed VFAR model in this paper. In addition, the extraction of equivalent system
matrix of state equation of motion for structures from the transformed VFAR model has
been developed, and then the normal modes can be calculated from the identi"ed equivalent
system matrix. Two examples of modal identi"cation are carried out to demonstrate the
availability and e!ectiveness of the proposed backward approach: (1) Numerical modal
identi"cation for a three-degree-of-freedom dynamic system with noise level in 20% of r.m.s
of measured output data; (2) experimental modal identi"cation of a cantilever beam. Finally,
to show the advantage of the proposed VBAR approach on the selection of physical modes,
the modal identi"cation by stochastic subspace method was performed. The results from
both methods are compared.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In practical design for vibration control or model updating of structural system, the modal
parameters provide important information on dynamic properties. During the past few
decades, various methods for identi"cation of modal parameters have been developed.
According to the processing domain, the modal identi"cation can be categorized into
time-domain and frequency-domainmethods. The frequency domain methods have become
popular, and are still predominant in engineering practice [1, 2]. The time-domain methods
are useful for problems with large number of modes from multi-channel measurement,
also useful for closely spaced and non-proportional modes. The time-domain or
frequency-domain methods have their merits in extracting modal parameters from
measured data. The time-domainmethods can directly address the measured response data;
hence this paper focuses on the time-domain methods.

The works on time-domain method began in the late 1970s, such as the Ibrahim
time-domain method [3, 4] and the polyreference method [5}7]. The eigensystem
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



250 C. F. HUNG AND W. J. KO
realization algorithm (ERA) proposed by Juang and Pappa [8, 9] can identify the
state-space model from impulse response. The Prony signal analysis method [10] and the
time series model [11}13] have been proposed in the last decade to identify modal
parameters in various engineering "elds.

In order to improve the accuracy of identi"ed modal parameters for measured data with
noise, the overspeci"ed model order is a popular approach among the time-domain
methods. Discriminating physical modes from spurious modes and then reducing the
overspeci"ed models to an equivalent physical model play a key role for further
applications. The singular value decomposition based methods such as eigensystem
realization algorithm and stochastic subspace algorithm [14, 15] employ the dominant
singular value of preselected block Hankel matrix to identify the order of the model.
When the signal-to-noise ratio (SNR) is not high enough and the noise level
may outperform some physical modes, the singular value decomposition based methods
su!er from di$culties in the selection of the number of dominant singular value.
Cremona and Brandon [16] mentioned that the order determination by singular value
decompositionmethod is a totally subjective technique for estimating the number of modes,
and can lead to incorrect results in the presence of high level of noise. Therefore,
some reprocessing techniques or prior knowledge of structures may be required to
discriminate structure modes from spurious modes. Peterson and Alvin [17] proposed
a combination of several quantitative modal quality indicators (MQI) to discriminate
unwanted modes.

This paper concentrates on the time series model to extract the modal parameters from
measured output data. There are two kinds of time series models, one is the auto-regressive
moving average (ARMA) model, and the other is the auto-regressive (AR) model. The
maximum likelihood (ML) method for the estimation of the parameters of ARMA model is
very complicated, and requires optimization of the highly non-linear likelihood functions
[18]. Li and Ko [11] employed iterative and computationally expensive sub-optimal
techniques to determine the parameters of ARMA model. In addition, the likelihood
function may be characterized by a number of local extreme values that may lead to errant
results, initial guesses for the estimation of parameters are also required, and computational
instabilities may occur.

There are various schemes to overcome these shortcomings. The simplest way is the
adoption of a higher order of AR model in place of an ARMA model [13, 19}21]. The high
order AR model has high number of eigenvalues; only some of them are physical modes.
The selection of physical modes and the reduction of the high order model to a physical
model become key problems. He and Roeck [20] "tted the observed data to a series of
models with di!erent orders and plotted the "nal prediction error diagrams. The method
determines the range of model order only and further re"nement of the model is necessary.
Kumaresan and Tufts [22] proposed a backward prediction model to identify the
frequencies and damping factors from single-channel response data. Hollkamp and Batill
[23] developed a single-input}single-output backward time series model to predict the
transient response of the sailplane subject to arbitrary inputs. Cooper [24] used a backward
prediction error model to identify the natural frequencies and damping factors from single
channel response data. It showed that the backward model has an advantage in the
separation of physical modes from spurious modes. Because all eigenvalues computed from
a forward AR model using least-squares technique always locate inside the unit circle, the
separation of system eigenvalues from spurious eigenvalues needs some additional
technique, like Wahab and Roeck [25]. On the contrary, the system eigenvalues computed
by backward model will locate outside or on the unit circle, and the non-system eigenvalues
lie inside the unit circle.
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Both VFAR and VBAR models can process only output data, which are free response
data or forced response data under white noise type of exciting force. Huang [26] used
VFAR model to identify the dynamic characteristics of a structure from ambient vibration
measurement. In this paper, a vector backward auto-regressive (VBAR) model is proposed
for the mode selection and parameter estimation. For convenience of application, the
backward state equation established from VBAR model can be transformed into a forward
state equation. The system matrices of the transformed VFAR model are di!erent from
common VFAR model.

2. MULTIVARIATE BACKGROUND AR MODEL

The p-variate time series data, y
�
3R���, which are measured from p-channels on

a structure at time t, can be approximated by the following multivariate backward AR
model:
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where the subscript t is the discrete time index,N is the number of observed time steps, q is
the order of AR model, and �

�
is the backward prediction error. In this model, the current

time series data are expressed as a linear combination of the time series data in the next
future steps and the backward prediction error. The prediction error is assumed to be
a white noise with zero mean. This di!erence model in equation (1) is called the p-variate,
q-order vector backward autoregressive model, which is represented by VBAR (p, q). The
parameter matrices shown in equation (1), a

�
3R���, are termed as the backward AR

parameter matrices, which contain the dynamic characteristics of structural system. The
time series data in equation (1) can be assembled from time step t"1 to N!q, and the
following linear matrix equation can be established:
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The AR parameter matrices can be solved by least-squares method. The eigenvalues
of the backward model can be evaluated by its characteristic matrix polynomial as
follows [27]:
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where I
�
and 0

�
are p�p the identity and null matrices respectively. If the signal-to-noise

ratio is not high enough in the observed time series data, then the estimation of eigenvalues
from AR models will be disturbed by measurement noise. Therefore, how to improve the
accuracy of the estimated eigenvalues for noisy measurements is a problem of great concern.
An e!ective method is to overspecify the order of model.
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A state vector, z
�
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q-time steps is introduced and the following state-space equation can be obtained:
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or in compact matrix form
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The backward di!erence model described in equation (1) can also be rewritten as follows:
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Equations (4b) and (5b) are the state equation and output equation of VBAR
model respectively. The characteristic polynomial of the system matrix A�

�
is the same as

equation (3).
In experimental modal identi"cation, the analysis frequency bandwidth of the structure is

dependent on the sampling rate of measured data. Although the number of vibration modes
for a continuous structure is theoretically in"nite, only the modes within the analysis
bandwidth can be identi"ed correctly. If the measured data for a structure contains
n vibration modes, it will have n-pairs of conjugate system eigenvalues in state equation of
motion. A VAR model with p-channels and q-order for a structure has pq eigenvalues.
Usually, pq is much higher than 2n, and the order of VBAR model must be selected such
that q*2n/p, otherwise the wrong results may be obtained or some modes will be lost. The
2n system eigenvalues can be picked out from the pq eigenvalues. To establish the physical
state equation of motion and to determine the modal parameters, the pq!2n spurious
modes should be removed from the pq-modes of state equation.

For convenience of application, the backward state-space model can be transformed into
the forward model.When both sides of equation (4b) are multiplied byA���

�
, the state vector
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Substituting the above equation into equation (5b), the output equation can be rewritten
into its forward form as follows:
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Equations (6) and (7) are the state equation and output equation of transformed vector
forward AR model that is called TVFAR model in this paper. The VBAR and TVFAR
systems can be represented by the coe$cient matrices sets (A�

�
, B�

�
, C�

�
, D�

�
) and (AM

�
, BM

�
,CM
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)

respectively. From equations (4) and (6), the system matrix of transformed forward
state-space model is expressed as follows:
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The relationships between the transformed forward and backward state-space matrices
are
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The characteristic polynomial of the transformed forward state system matrix is
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When both sides of equation (10) are multiplied by !a
�
�M ��, the eigenvalue �M is not

changed, equation (10) can be rewritten as
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Comparing equation (3) with (11), it is clear that �"�M ��, i.e., the eigenvalues associated
with the characteristic polynomial of TVFAR model are the reciprocal of the eigenvalues
associated with VBAR model.

From equation (3), the eigenvalues of the backward state-space system matrix can be
decomposed as
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Kumaresan and Tufts [22] pointed out that the magnitudes of the eigenvalues of backward
model are

��
�
�*1)0 for i)2n, and ��

�
�(1)0 for j'2n. (12b)

And then the magnitudes of the eigenvalues for TVFAR are
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For TVFAR model the "rst 2n eigenvalues located inside or on the unit circle are
attributed to the system modes, and the leftover pq!2n eigenvalues located outside the
unit circle are the spurious modes. It should be mentioned here that all of the eigenvalues
from common forward AR model locate inside the unit circle.

The state equation derived from the proposed VBAR model provides a determinate
boundary to distinguish the system modes from spurious modes.

The reduced order state-space model in discrete time with size of 2n, which is represented
by (A

�
, B

�
, C

�
, D

�
), can be constructed by removing the corresponding columns and rows of

pq!2n spurious modes in the transformed forward state equation (see Appendix A). Then
the state-space system can be transformed into a continuous time model, represented by (A


,

B

, C


, D


), as follows [28]:
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3. EXTRACTION OF MODEL PARAMETERS

The equation of motion for a structure system with n degrees of freedom under the
exciting force can be expressed by

My( (t)#EyR (t)#Ky(t)"B


u(t) (14)

where t is the continuous time, y(t) is the n�1 displacement vector, u(t) is the nH1 force
vector, M is the n�n positive-de"nite mass matrix, E is the n�n positive-semide"nite
damping matrix, K is the n�n positive-semide"nite sti!ness matrix, and B



is the n�n

input matrix. The dots denote di!erentiation with respect to time. In the practical
experimental identi"cation of dynamic characteristics of structures, not all of the degrees of
freedom are observed. For a measurement system with p sensors on structures, if the sensors
for displacement, velocity, and acceleration are arranged on di!erent locations to measure
the di!erent types of dynamic responses simultaneously, then the output equation of the
structural system for combined displacement, velocity and acceleration (DVA)
measurements can be expressed as [28, 29]
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�
3R��� are the output in#uence matrices of displacement, velocity and

acceleration respectively. After introducing the state vector, z(t)"�x(t), xR (t)�3R����, the
equations of motion for the physical model described by equation (14) can be transformed
into the following state equation of motion:
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where A3R����� is the system matrix, B3R���� is the input matrix, and
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The output equation in equation (15) can be transformed as
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Here, C3R���� is the output in#uence matrix of the state vector z(t), D3R��� is the direct
transmission matrix. The matrix D will disappear from equation (18) when acceleration is
not used as measured output.

When the input information is absent, from the measured response data we can identify
the equivalent state system matrixA


and the output in#uence matrix C


only. The matrices
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have no e!ect on the extraction of modal parameters. The natural frequencies and

mode shapes can be computed from the eigenanalysis of the system matrix A in equation
(17a). The eigenanalysis of the identi"ed equivalent system matrix A


in equation (13a)

should provide the same results for a noise-free system. The natural frequencies and
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The normal mode shapes are the eigenvectors of the matrix M��K, which appears in the
left-lower block of matrix A. Although the identi"ed system matrix A


has the same modal

parameters as matrix A, however, the distribution of the elements in these two matrices are
di!erent, i.e., the left-upper block in matrixA


is not a zero matrix and the right-upper block

is not a diagonal unit matrix. Therefore, the normal modes cannot be calculated from the
left-lower block of identi"ed A


directly. Hung et al. [29] proposed a transformation matrix

¹ that can transform the identi"ed system matrix A

into a matrix with the same type as

matrix A. The transformation matrix can be expressed in terms of the identi"ed A

and

C

together with the output in#uence matrices for displacement, velocity and acceleration as

follows:
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The identi"ed system matrix AM that has the same type as physical system matrix A in
equation (17a) can be obtained by the following transformation:

AM "¹A

¹��. (23)

When only one of the displacement, velocity and acceleration is available to be measured,
the transformation matrices are
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� for displacement only, (24a)
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The normal model shapes are the eigenvectors of the negative submatrix of left-lower
block of matrix AM .

4. NUMERICAL EXAMPLE

In order to illustrate the availability of the proposed VBAR approach, a lumped mass
model with three d.o.f. shown in Figure 1 is selected as a study case. The parameters of this
model are: m

�
"1, m

�
"2, m

�
"3, c

�
"c

�
"c

�
"0)1, c

�
"c

�
"0)2, k

�
"10, k

�
"20 and

k
�
"30. The system is excited by a random non-zero initial condition. For reference

purpose, the fourth order Runge}Kutta method was employed to calculate the
displacement, velocity and acceleration at m

�
, m

�
and m

�
, respectively, and the calculated

dynamic responses are used as the true values. The sampling rate of the time series data was
5 Hz, and the short data record of 256 data points of displacement, velocity and acceleration
were picked. The time histories of response for di!erent sensors at di!erent positions are
shown in Figure 2. The time histories of magnitude and change rate of the measured
displacement, velocity and acceleration are obviously di!erent. To examine the e!ects of
noise on the accuracy of the identi"edmodal parameters, a zero mean white noise with 20%
r.m.s. of measured response was added to the noise-free response data to simulate the
measurement noise.
Figure 1. Three d.o.f.s lumped mass model.



Figure 2. Time history responses of three d.o.f.s model. (a) acceleration at m
�
; (b) velocity at m

�
; (c) displacement

at m
�
.

MODAL PARAMETERS FROM OUTPUT DATA 257
In order to show the advantage of the proposed method on the selection of system order
and model reduction, the stochastic subspace identi"cation (SSI) algorithm is used as
a comparative case. For the concept and procedure of modal identi"cation using the SSI
algorithm, please refer to the literature of Overschee and Moor [14, 15]. The SSI algorithm
determines the model order by the singular value decomposition (SVD) technique of
a weighted projection matrix, and reduces the model by selecting the dominant singular
values (DSV). Figure 3 shows the distribution of singular value calculated by the SSI
algorithm with 15 block rows in the case of 20% noise level. The total number of singular
values is 45. The SVD based algorithm may fail to "nd out the exact mode order. Figure 3
shows that there are at least three gaps in the singular plots. The number of dominant
singular values may be two, four or six depending upon the subjective selection of the user.
On the contrary, the proposed VBAR approach uses the border of unit circle to select the
structure eigenvalues from all computed eigenvalues.

In order to compare with the SSI algorithm the order of the ARmodel was selected as 15.
The distribution of computed 45 eigenvalues by common VFAR method and the TVFAR
approach is shown in Figure 4. It shows that both models provide the same system
eigenvalues; however, all of the eigenvalues computed by the commonVFARmethod locate
inside the unit circle; and it is not easy to discriminate the system modes from spurious
modes directly. On the other hand, the eigenvalues computed by the proposed approach are
divided into two parts, the points located inside the unit circle are the identi"ed system
modes, and the others located outside the unit circle are the spurious modes. It is clear that
the number of system modes determined by the eigenvalue "lter is six.



Figure 3. Distribution of singular value for 15 block rows (20% noise level). (a) Magnitude (b) logarithm.

Figure 4. Distribution of eigenvalue by common VFAR approach and TVFAR approach with order 15
(20% noise level). *, VFAR; � and �, TVFAR.
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Table 1 shows the comparison of the identi"ed natural frequencies and damping ratios
between the proposed approach and the SSI algorithm with various selections of dominant
singular values (DSV). When the number of selected DSV is not adequate in the SSI
approach, the identi"ed modal parameters may have notable errors.



TABLE 1

Comparison of identi,ed natural frequencies (Hz) and damping ratios (%) by <BAR (3,15) and
SSI methods (20% noise level)

Mode True VBAR(3,15) SSI(15)

DSV"2 DSV"4 DSV"6

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

1 0)1699 1)7626 0)1702 1)6530 N.A. N.A. N.A. N.A. 0)1700 0)5127
2 0)7120 3)4783 0)7109 3)4812 N.A. N.A. 0)7116 3)5052 0)7124 3)4800
3 1)0537 3)7849 1)0535 3)6449 0)9341 6)6453 1)0524 3)8664 1)0524 3)8492

Figure 5. Identi"ed natural frequencies and damping ratios versus VBAR order.
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Figure 5 shows the distribution of the identi"ed natural frequencies and damping ratio
versus model order by the proposed method. Straight dotted lines indicate the true values.
Although the selection of the number of dominant singular values is not easy in the SSI
approach under high noise background, a preselected DSV number is set to six for
comparing with the proposed VBAR method. Figure 6 shows the results by subspace
approach. The results show that increase of the order for VBAR model and the number of
block rows for SSI method can improve the accuracy of the identi"ed modal parameters.
Both methods have superior ability in identifying the natural frequencies, but the identi"ed
damping ratio of the "rst mode using SSI method seems to fail in convergence. Modal
assurance criterion (MAC) can roughly evaluate the accuracy of the identi"ed mode shape.
Figure 7 shows theMAC of the identi"ed "rst mode shape, it shows that the identi"edmode
shape by the proposed method is better than by SSI method in high level of noise.



Figure 6. Identi"ed natural frequencies and damping ratios versus number of block rows using SSI approach.

Figure 7. MAC of the "rst mode shape. �, VBAR; *, SSI.

260 C. F. HUNG AND W. J. KO



MODAL PARAMETERS FROM OUTPUT DATA 261
5. EXPERIMENTAL EXAMPLE AND DISCUSSION

The experimental modal identi"cation of a vertical cantilever beam shown in Figure 8
was set up with four measurement points. The cantilever has a rectangular cross-section; the
geometric and material properties are listed in Table 2. Three Keyence LB-70/LB-11 and
one LB-081/LB-1101 laser displacement meters were employed to measure the
displacement response as shown in Figure 8. The PCB modally tuned impulse hammer was
used to hit the top of the beam transversely (point 4 in Figure 8). The response signals were
fed through a set of controllers to a multi-channel A/D converter at a sampling rate of
360 Hz, and 1024 data points were taken for each channel.

The distribution of logarithm of singular value calculated by stochastic subspace
identi"cation (SSI) method in 20, 30, 40 and 50 block rows are shown in Figure 9. It is
di$cult to guess the actual number of DSV from di!erent block rows. Figure 10 shows the
distribution of eigenvalues identi"ed by the proposed TVFAR with order 20. The "rst 20
eigenvalues and their magnitude in the ascending order are listed in Table 3. From Figure
10 and Table 3, it is very obvious that the proposed approach can easily recognize the
number of system eigenvalues to be eight. Figure 11 and Table 4 show the distribution of
eigenvalues and their "rst 20 eigenvalues identi"ed by TVFAR with order 40. There are
a total of 160 eigenvalues, but only 8 of them are the system modes.

In this example the sampling rate of measured data series is 360 Hz, and the analysis
bandwidth of frequency is 180 Hz. Although the number of vibration modes of the
continuous beam is theoretically in"nite, the number of vibration modes below 180 Hz is
only four, therefore only four pairs of conjugate complex roots can be found. When the
sampling rate of measured data is increased, more pairs of system modes will be identi"ed if
the order of VBAR model is adequate. The characteristic roots of equations (3) and (10)
associated with higher damping ratios are farther from the unit circle, and therefore the
proposed approach is e!ective in a dynamical system with large damping ratios.
Figure 8. Experimental arrangement of cantilever steel beam.



TABLE 2

Geometric and material properties of cantilever beam

Parameters Value

Length ¸, (cm) 150
Width B (cm) 5
Thickness ¹ (cm) 1
Young's modulus E (Gpa) 190
Mass density  (Kg/m�) 7850

Figure 9. Distribution of singular values for various block rows (cantilever beam). #, 20; �, 30; *, 40; �, 50.
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Figures 12}15 show the relationship between the identi"ed natural frequency, and the
order for VBAR method or block rows for SSI methods. In each selected block row, the
DSV is set to 8 compared with 8 system modes of VBAR model. The results show that the
modes identi"ed by VBAR method are more stable than by SSI method. If the model order
is high enough, the eigenvalue "lter for VBAR method can separate all system modes from
spurious modes. The higher order of model can increase the accuracy of te identi"ed modal
parameters.

Table 5 lists four identi"ed natural frequencies and damping ratios by VBAR with order
40 and the natural frequencies by Euler}Bernoulli beam theory without damping. Figure 16
shows four identi"ed relative mode shapes and the mode shapes obtained by beam theory.
The distribution of power spectrum density of the measured data at position 1 shown in
Figure 17 can verify these modes that have been identi"ed.



Figure 10. Distribution of eigenvalue by TVFAR(4, 20) (cantilever steel beam).

TABLE 3

¹he ,rst 20 eigenvalues and their magnitudes of cantilever beam by ¹<FAR (4,20)

Eigenvalue Magnitude Eigenvalue Magnitude
modes 1}10 modes 1}10 modes 11}20 modes 11}20

0)4761!0)8787i 0)999397 0)9529!0)4249i 1)043367
0)4761#0)8787i 0)999397 0)9529#0)4249i 1)043367

!0)5099!0)8598i 0)999598 0)4801!0)9422i 1)057445
!0)5099#0)8598i 0)999598 0)4801#0)9422i 1)057445

0)9273!0)3740i 0)999867 0)5105!0)9457i 1)074696
0)9273#0)3740i 0)999867 0)5105#0)9457i 1)074696
0)9981!0)0607i 0)999953 0)7611!0)7592i 1)075007
0)9981#0)0607i 0)999953 0)7611#0)7592i 1)075007

!0)9454!0)3329i 1)002326 1)0740!0)1146i 1)080109
!0)9454#0)3329i 1)002326 1.0740#0)1146i 1)080109
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6. CONCLUSION

In this paper, a vector backward ARmodel to identify the modal parameters from output
data of multi-channel measurement system has been examined. The proposed method not
only identi"es the natural frequency and damping ratio accurately, but also extracts the
relative mode shapes. The key advantage of the proposed VBAR approach is that the



Figure 11. Distribution of eigenvalue by TVFAR(4,40) (cantilever steel beam).

TABLE 4

¹he ,rst 20 eigenvalues and their magnitudes of cantilever beam by ¹<FAR (4,40)

Eigenvalue Magnitude Eigenvalue Magnitude
modes 1}10 modes 1}10 modes 11}20 modes 11}20

0)4761!0)8787i 0)999389 1)0008 1)000768
0)4761#0.8787i 0)999389 0)9940!0)1218i 1.001468

!0)5098!0)8598i 0)999573 0)9940#0.1218i 1)001468
!0)5098#0)8598i 0)999573 0)9076!0)4311i 1)004748

0.9273!0)3740i 0)999861 0)9076#0)4311i 1)004748
0)9273#0)3740i 0.999861 0)9563!0)3123i 1)006044
0.9981!0)0607i 0)999957 0)9563#0)3123i 1)006044
0)9981#0)0607i 0)999957 !0)7286!0)7227i 1)026257

!0)9436!0)3317i 1)000141 !0)7286#0)7227i 1)026257
!0)9436#0)3317i 1)000141 0)4382!0)9317i 1)029576
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system eigenvalues can be separated clearly from the spurious modes using the boundary of
unit circle.

The proposed VBAR model can be transformed to TVFAR model to extract the system
matrices for the equation of motion of physical model. And it has the same possible
applications as the common forward AR approach.

In the numerical example, a noise level in 20% r.m.s. of measurement data are taken into
consideration. The results of numerical and experimental examples show that
determination of the number of system modes using SVD-based method is not easy without
using the prior information of structure or other useful criteria. The proposed VBAR model



Figure 12. Natural frequencies versus the order of VBAR or block rows of SSI (cantilever steel beam). �, "rst
mode by VBAR; ** and } } } for "rst and second modes by SSI.

Figure 13. Natural frequencies versus the order of VBAR or block rows of SSI (cantilever steel beam). �, second
mode by VBAR; *, third mode by SSI.
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Figure 14. Natural frequencies versus the order of VBAR or block rows of SSI (cantilever steel beam). �, third
mode by VBAR; *, fourth mode by SSI.

Figure 15. Natural frequencies versus the order of VBAR or block rows of SSI (cantilever steel beam). �, fourth
mode by VBAR; *, "fth mode by SSI.
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TABLE 5

Comparison of natural frequencies (Hz) and damping ratios (%) by
Euler}Bernoulli beam theory and by <BAR(4,40) model

Mode E!L theory Identi"ed by VBAR(40)
�

�
�

�
�
�

1 3)5322 3)4826 0)0707
2 22)1356 21)9672 0)0364
3 61)9804 61)5481 0)0569
4 121)4569 120)6663 0)0203

Figure 16. The relative mode shapes. ** for analytical solution; *, "rst mode; �, second mode; ��, third
mode; #�, fourth mode.
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can easily determine the order of system modes directly. Although the numerical and
experimental examples in this paper only used the free response data for the identi"cation of
modal parameters, the application can be extended to the cases for ambient vibration, or
forced response excited by unknown white noise.
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Figure 17. The power spectrum density of measured displacement at point 1 of cantilever steel beam.
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APPENDIX

A discrete time state-space system with size pq can be expressed as
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. (A.1, 2)

The state system matrix a can be decomposed as follows:
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where the subscripts s and p indicate the system and spurious mode respectively. �
�
and

�
�
are the diagonal sub-matrices that contain the 2n system eigenvalues and pq!2n

spurious eigenvalues respectively.
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Let x�
�
"P��z�

�
, and then z�

�
"Px�

�
.

Multiplied by P�� equation (A.1) becomes
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The state vector can be divided into system and non-system parts, and equations (A.1)
and (A.2) can be rewritten as follows:
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where
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Neglecting the a!ection of spurious modes in z�
�
"Px�

�
, the state vector of system part can

be approximated as z��
�
+p
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x��
�
, and then x� �

�
+p��

��
z��
�
.

The state equation and output equation of the reduced order system with size 2n can be
expressed as follows
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